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Abstract

In adult number processing two mechanisms are commonly used: approximate estimation of quantity and exact calculation.
While the former relies on the approximate number sense (ANS) which we share with animals and preverbal infants, the
latter has been proposed to rely on an exact number system (ENS) which develops later in life following the acquisition of
symbolic number knowledge. The current study investigated the influence of high level math education on the ANS and the
ENS. Our results showed that the precision of non-symbolic quantity representation was not significantly altered by high
level math education. However, performance in a symbolic number comparison task as well as the ability to map accurately
between symbolic and non-symbolic quantities was significantly better the higher mathematics achievement. Our findings
suggest that high level math education in adults shows little influence on their ANS, but it seems to be associated with a
better anchored ENS and better mapping abilities between ENS and ANS.
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Introduction

Number processing is part of a wide range of numerical

activities such as counting, estimating, simple addition as well as

more complex mathematical activities such as solving equations. It

is often assumed that higher mathematical abilities, typically

acquired years later than basic number processing and calculation,

rest upon proficiency in early numerical activities (e.g. counting,

reciting multiplication tables). Consequently it is often expected

that expertise in mathematics goes hand in hand with excellent

basic number processing abilities. In a restaurant, for example, it

falls typically onto the mathematics lecturer to sort out the bill for

a larger group. However, it is not clear yet whether mathematics

expertise and excellent basic number processing and calculation

skills are as closely linked as commonly assumed. The current

paper investigates whether undergoing an education dedicated to

mathematics at a high level is related to a better general grasp of

numbers and to excellent basic numerical abilities.

The Approximate Number System
Over the last 30 years, research in numerical cognition has

gathered strong evidence that humans are equipped with a core

ability to grasp numerical quantities, commonly referred to as the

‘‘number sense’’ [1] or the approximate number system (ANS) [2].

This core ability seems to be part of an ontogenetic and

phylogenetic early system, as it has already been found in

newborns [3] and in various animal species [4]. The number

sense has been largely associated with a specialized cerebral system

located in the intraparietal sulcus (IPS) of both hemispheres (see

[5] for a review). It is defined as intuitive, as it is fast, automatic

and inaccessible to introspection [6]. It is also approximate

because it obeys Weber’s law at a behavioral and at a neuronal

level [7]: the larger the numbers/numerosities, the more

approximate their processing.

The metaphor of a logarithmically compressed mental number

line has been commonly used in the literature to refer to number

representations and can be thought of a conceptualization of how

numerical processing obeys Weber’s law. According to this

metaphor, numerosities are represented in an analogous format

by overlapping Gaussian distributions of activation [1]. Weber’s

law is recurrent in numerical cognition, as it has been repeatedly

found: 1) in different populations, such as in adults in Western

(e.g., [8–9]) or remote cultures (e.g., [10–11]), in pre-verbal infants

(e.g., [12–13]) and children (e.g., [14–15]), as well as in different

animal species, such as rats (e.g., [16]) or rhesus monkeys (e.g.,

[17]); 2) in different tasks: comparison (e.g., [7]); estimation (e.g.,

[18]); arithmetical operations (e.g., [19–20]); and 3) for symbolic

and non-symbolic numerical material [21]. Moreover, the

pervasiveness of Weber’s law is also shown at the neural level in

children and adults, as well as across species: brain responses are

similarly tuned to approximate numerosity in human adults [7], 3-

month-old infants [22], and in macaque monkeys [23].

The Weber Fraction
Recently, the Weber fraction (w) has been used to assess the

ANS acuity. This measure constitutes a sensitive and relevant

quantitative estimator of the amount of error of the ANS, as it

corresponds to the standard deviation of its estimated Gaussian

distribution [7,11,24–25]. Research on the development of the

Weber fraction is only in its outset, but several recent studies

suggest that, in typical development, the Weber fraction decreases

with age: it follows a trajectory with an initial sharp decrease in

infancy (corresponding to an increase in acuity), followed by a

gradually smaller but ongoing reduction over time (see [5] for a
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review) (see Figure 1). The average w for educated numerate adults

is estimated to be between 0.11 and 0.15 [2,6,26]. The cause of the

decrease of w with age, corresponding to an increase in ANS

precision, is still unknown and discussed in the literature [26]. A

first hypothesis is that it could be the result of a simple

maturational process, as no cultural or educational factors can

account for the developmental trend of w found in preverbal

infants. A second hypothesis is that experience individuals have

with numerical information, for example through the acquisition

of the symbolic number system and a day-to-day engagement in

numerical discrimination, would explain the greater ANS

precision. Pica et al.’s [11] results indicate a slightly larger w in

a remote culture (the Munduruku: w = 0.17), than in an educated

numerate Western culture (French: w = 0.12), supporting this latter

hypothesis ([8]; but see [5,26]). Moreover, the impact of

experience on the ANS has recently been illustrated in blind

people: early visual deprivation and its following experience with

numerical information seem to have a positive impact on

numerical estimation abilities [27]. Therefore, it is reasonable to

assume that these two hypotheses are not exclusive, and that

maturation processes, as well as education and experience with

numerical information, could be responsible for the refined

precision of w with age [3].

The ANS and Mathematics Achievement
Different proposals have been made for the acquisition of

symbolic numerical knowledge (see Piazza [28] for a review).

Counting and the acquisition of its principles have been

highlighted as a critical foundation for later math achievement,

in particular arithmetic that develops in the pre-school years

[29,30]. Mastery of the how-to-count principles has notably been

found to predict children’s later abilities in math and in particular

in arithmetic [31]. The ANS has also been considered as essential

for the acquisition of symbolic numerical knowledge (e.g., [32,33]),

while other authors focus on the object-tracking system (OTS), as a

core quantitative system allowing the exact representation of small

numerosities with an upper limit of 3–4 objects [34,35]. A

combination of the ANS and the OTS has also been proposed

[36,37]. However, it has also been postulated that neither the

ANS, nor the OTS play a significant role in acquiring symbolic

numerical knowledge [38], whereas Butterworth [39] proposed the

existence of an innate and exact representation for large numbers.

Nevertheless, the idea that the ANS is crucial for the acquisition

of subsequent numerical and arithmetical skills (e.g., [1–2,19])

seems to have gathered greater evidence, especially in view of

recent research findings (see [28], for a review). Most of the

research has been conducted in children, studying the relationship

between mathematics achievement and tasks involving basic

numerical abilities. A growing set of data has shown that

mathematics achievement and/or counting abilities in children

correlate with estimation abilities [24,40–46], non-symbolic

arithmetic performances [19], symbolic and non-symbolic com-

parison accuracy [43] and the symbolic numerical distance effect

(i.e., the greater mathematics achievement, the smaller the

symbolic distance effect) [43,47,48]. However, several studies

have failed to find a significant association between the ability to

deal with approximate numerosities and arithmetic [49,50]. In

contrast to other proposed precursors of arithmetic such as

counting, the mechanisms by which ANS acuity could form the

basis of arithmetic are currently underspecified. Butterworth [51],

for example, highlights that it is unclear how an increase in ANS

precision could help to establish one-to-one correspondence, an

important step in learning to count, add and subtract. Thus,

although the ANS might provide a primary foundation for

mathematical skills, many researchers argue that this system alone

is not sufficient for the development of arithmetic.

However, it is important to establish whether ANS acuity is

related to higher order mathematics. Only a few studies have

directly investigated the link between the ANS acuity (w) and

higher order mathematics and numerical abilities so far. First,

Halberda et al. [2] showed that individual differences in 14-year-

old teenagers’ w correlate with their past scores on mathematics

tests all the way back to kindergarten. Second, Piazza et al. [26]

provided evidence of the foundational role of the core ANS for the

development of higher level numerical abilities, by showing the

existence of a link between dyscalculia and an impaired ANS.

Moreover, the severity of dyscalculic children’s ANS impairment

appeared to be a good predictor of their defective performances on

symbolic comparison tasks. However, and contrary to the authors’

predictions, w did not correlate with the children’s mathematics

achievement. Supporting these latest results, Mazzocco, Feigenson

& Halberda [52], conducted a study on ninth grade students with

either dyscalculia or with low, typical or high mathematics

achievement and also found that dyscalculia is linked with an

impaired ANS acuity. In addition, their results showed that

dyscalculia is associated with impaired mapping abilities between

ANS and number words. To estimate the precision of the mapping

between the ANS and the symbolic verbal number system,

Mazzoco et al. [52] submitted their participants to a number

identification task, in which participants had to verbally estimate

the numerosity of sets of dots briefly presented. This task involves a

non-symbolic to symbolic mapping. Moreover, in this study the

level of achievement in 14–15 year-olds without dyscalculia did

not correlate with ANS acuity per se (w), but it did with the

precision of verbal mapping. Finally, Mazzocco, Feigenson &

Halberda [53] demonstrated that mathematics ability in primary

school can be predicted by the ANS acuity measured at preschool,

prior to formal education in mathematics.

These findings speak for the idea that ANS might play an

important role in the normal development of more advanced

numerical and mathematical abilities. However, the reverse seems

also plausible given that the acquisition of the symbolic number

system is in turn assumed to result in deep changes in our primary

core quantity system, the ANS [33].

The Exact Number System
Recent studies strongly suggest that the acquisition of more

advanced numerical skills with development might shape the ANS

Figure 1. ANS acuity over the lifespan. ANS acuity is measured by
estimated Weber fractions as a function of age. The solid black line
represents the power function fit. Reprinted from Piazza (2010) [28].
doi:10.1371/journal.pone.0033832.g001
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[6]. Indeed, with the acquisition of the symbolic number system,

children develop mapping routes between the numerical symbolic

codes and their corresponding core non-symbolic magnitude

representations. The greater their counting and mathematical

abilities, the greater are their mapping abilities [13,24,43,47,54].

However, the acquisition of the symbolic number system does not

simply induce the development of mapping routes between the

symbolic number codes and the ANS, it also involves profound

changes in the cerebral network responsible for numerical

processing: a progressive shift from predominance of the right

IPS to involvement of both left and right IPS for symbolic and

non-symbolic numerical processing [21–22,55,56] and an increas-

ing activation in and around the left IPS for arithmetic processing

[57] have been reported with increasing age. These changes have

recently been interpreted as reflecting a progressive refinement of

the ANS into a second number system dealing with symbolic

numbers for exact number processing, named here the exact

number system (ENS).

A large set of behavioural data support the hypothesis of a

refinement of the ANS into the ENS over development with the

acquisition of symbolic numerical knowledge. The existence of the

ENS as a semantic numerical representation with greater precision

to process symbolic numerals has firstly been suggested with the

observation that the distance and size effects for symbolic numerals

are smaller than for non-symbolic numerosities [58]. More

recently, children showed different patterns of performance over

development, when performing number line tasks. Indeed, in

kindergarten, children presented approximate performances,

reflecting the use of a logarithmic numerical representation (i.e.,

the ANS) to solve number line tasks. Second and third graders

presented different patterns of performances according to the

numerical range tested: precise performances on 0–100 number

lines, approximate performances on 0–1000 number lines. These

findings suggest the existence of multiple semantic numerical

representations, such as the ANS and the ENS. Moreover, they

reflect the simultaneous co-existence at a certain point in

development (i.e., from second grade) of an immature early

developing approximate logarithmic numerical representation

(i.e., the ANS) for unfamiliar larger numerical range and a more

mature late-developing precise linear numerical representation

(i.e., the ENS) for familiar smaller numerical range. On the other

hand, adults presented linear numerical processing in both

numerical ranges: 0–100 and 0–1000 number lines [46,59–62].

These results have been recently replicated by Ashcraft & Moore

[63], by submitting first to fifth graders and college students to

number line estimation tasks. Their results showed an increasing

occurrence of a linear pattern of performance with age. Moreover,

Ashcraft & Moore [63] found that children’s mathematics

achievement significantly correlated with the strength of linear

responding in number line tasks. According to these authors,

education and the acquisition of symbolic number knowledge play

a crucial role in the emergence of the ENS from the ANS (e.g.,

[46,63]).

Further behavioural evidence on the development of ENS with

age comes from the size congruity effect found in number stroop

paradigms [64]. In this paradigm, a pair of Arabic digits is

presented to the participants, who have to either respond to the

numerically or physically larger number, while ignoring the

irrelevant dimension to solve the task. This stroop paradigm can

be used to investigate the automatic access to the semantic

numerical information from the presentation of symbolic numerals

(i.e., the automatic access to the ENS). The automatic activation of

the ENS has been found to develop gradually in children, as no

size congruity effect could be found in first graders, while it started

to be present in third graders and was significantly robust in fifth

graders [65,66].

Neuroimaging data also support the idea of the existence of the

ENS in addition of the ANS. Following the observation that, in

adults, the estimated ANS acuity at the neuronal level is greater in

the left IPS (w = 18) than in the right IPS (w = .25) [7], it has

notably been suggested that the ENS might be lateralized in the

left hemisphere [5–6,21,49,67,68]. Moreover, it appeared that

Arabic numerals are coded with greater precision than sets of

objects, particularly in the left hemisphere [21]. With the use of an

fMRI adaptation paradigm, Cohen Kadosh et al. [69] found

evidence for format dependence, as the neuronal modulatory

effect of magnitude change appeared to vary with the format of

presentation (symbolic: Arabic numerals vs. non-symbolic: sets of

dots). These results support the existence of different semantic

numerical representations in adults’ IPS for symbolic numerals

(i.e., the ENS) and non-symbolic numerosities (i.e., the ANS).

Therefore, with the acquisition of arbitrary cultural symbols for

numbers, our core ANS would be refined in the left parietal lobe

into a formal, symbolic and linearly represented ENS [6,33],

allowing the automatic access from symbolic numbers to their

corresponding magnitude; while a dormant approximate logarith-

mic number system would remain in the right IPS [6,52,59].

Nowadays, little is known about the effects of mathematical

education on the ENS. The aim of our study was to test in adults

the effects of high level of mathematics education on the two core

systems of number knowledge, the ANS and the ENS, as well as on

the mapping abilities between them.

The Current Study
To date, the study of our core number systems, the ANS and the

ENS, has just begun and many questions remain open. Evidence

of the link between the ANS and higher-level mathematics abilities

is still sparse and inconclusive, especially in adults. The next

challenge, as recently highlighted by Dehaene [6], is to understand

how math education changes our two core systems of number

knowledge (ANS and ENS), and to investigate whether a sustained

education in mathematics involves greater ANS acuity [8]. Here,

we directly addressed the question of the impact of high level

education in mathematics on the ANS, the ENS and the mapping

abilities between these two core number systems, by comparing

performance on basic numerical tasks with symbolic and non-

symbolic material, in a group of participants who are studying

mathematics at university, and can thus be considered as a group

with an extended instruction in mathematics, to a control group.

Both groups of participants were initially submitted to a series of

arithmetic tests to measure their level of mathematics achieve-

ment, as well as to a spelling test as a control measure for more

general cognitive abilities (see for example [19] for a similar use of

verbal tasks as control measures). Secondly, participants were

respectively tested on: a) a basic non-symbolic numerical

comparison task based on Piazza et al. [7], allowing participants’

ANS acuity (w) to be measured; b) a symbolic numerical

comparison task, allowing to investigate the impact of high level

education in mathematics on the ENS; c) a numerosity production

and a numerosity perception tasks based on Crollen et al. [18],

involving the estimation of non-symbolic quantities either through

production (i.e., mapping from the ENS to the ANS) or through

perception (i.e., mapping from the ANS to the ENS), allowing the

study of the impact of an extended education in mathematics on

mapping abilities between the symbolic numerical representations

and their corresponding magnitudes.

Recent findings on children with dyscalculia [26,52] and older

children [2] provide strong evidence that the ANS plays an

Mathematics Achievement and the Number Sense
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important role in the acquisition of more advanced numerical and

mathematical abilities. However, the question of the link between

high level mathematics education and ANS acuity is still wide

open, especially in adults. If the level of education in mathematics

is linked with ANS acuity, then greater ANS acuity (i.e., smaller w

in the non-symbolic comparison task, smaller coefficients of

variation on the numerosity production and perception tasks)

should correlate with higher mathematics achievement which in

turn is often associated with an extended education in mathemat-

ics. Links between mathematics achievement and basic numerical

skills on symbolic material, as well as between mathematics

achievement and mapping abilities between the ANS and the ENS

have been clearly demonstrated in developmental studies

[24,26,43,47,48,52]: the greater mathematics achievement in

children, the greater their symbolic numerical and their mapping

abilities between the ANS and the ENS. Can these results be

extended to adults? This question is particularly important, as

following the observation that the relationship between mathe-

matics achievement and the symbolic distance effect declines with

age, it has been postulated that basic number knowledge might

only be predictive of mathematics performances at an early age

(i.e., when formal mathematics instruction is introduced) [48].

This would be consistent with a hypothesis emphasizing education

rather than a purely developmental hypothesis. If the results found

in children on the relationship between mathematics achievement

and symbolic numerical and mapping abilities can be extended to

adults, then participants with a high level of mathematics

education should possess a greater ability to compare two

numerals (faster reaction times, greater accuracy and/or smaller

symbolic distance effect), as well as greater mapping abilities

between symbolic numerals and their corresponding magnitudes,

i.e they should show a better performance on tasks that rely on the

ENS.

No clear predictions, however, can be made yet on whether the

effect of a greater experience with the symbolic number system

and mathematics would be restricted to better symbolic numerical

processing, or whether positive correlations would generalize to

non-symbolic numerical processing (as a marker of the ANS) as

well. Indeed, regarding this particular issue, different patterns of

performances have been found in the literature. On the one hand,

some authors found a link between non-symbolic numerical

processing (e.g., non-symbolic arithmetical abilities) and mathe-

matics achievement in children [2,19,26]. On the other hand,

other authors found a particular relationship between numerical

processing and mathematics achievement, which was limited to

symbolic numerical input and was not found for non-symbolic

numerical input [43,48,49,50]. No clear predictions can notably

be made on mathematics achievement and the non-symbolic

distance effects, as it appeared in children that mathematics

achievement was essentially correlated with the symbolic distance

effect, while no correlation has been found between mathematics

achievement and the non-symbolic distance effect [43,48].

Therefore, in our study, if an extended experience with

mathematics has a general positive impact on all numerical

abilities whether they rely on the ENS, the ANS or both, then

mathematics achievement should be positively correlated with

performances in all our tasks, whatever their format of

presentation. On the contrary, if an extended experience with

mathematics has a limited positive impact on the ENS and/or its

access, then mathematics achievement should only be positively

correlated with performances in the tasks involving the ENS, but

not on non-symbolic numerical performances per se, neither on

the ANS’ acuity.

To sum up, our goal was to determine, in adults, the effects of

math education on the two core systems of number knowledge, the

ANS and the ENS. In particular, we wanted to investigate whether

math education enhances ANS acuity and leads to better basic

numerical abilities on symbolic and non-symbolic material, as well

as to better mapping abilities between symbolic numerals and their

corresponding magnitude representations.

The present study consisted of a series of standardized and

empirical tests. The arithmetic subtest of the fourth Wide Range

Achievement Test (WRAT4) [70] and separated speeded calcu-

lation exercises (i.e., additions, subtractions and multiplications)

were used to assess participants’ mathematics achievement. The

WRAT4 spelling subtest was also given [70]. These tests were

followed by four computerized basic numerical tasks on symbolic

and non-symbolic material. The first experiment was a replication

of Piazza et al.’s [7] non-symbolic comparison task (Experiment 1),

allowing participants’ Weber fraction (w) to be computed. The

second experiment was a classic symbolic comparison task to a

fixed standard (65), allowing participants’ symbolic distance effect

to be measured (e.g., [71]) (Experiment 2). The last two

experiments then involved the estimation of non-symbolic

quantities either through production (Experiment 3) or perception

(Experiment 4), so that participants’ mapping abilities in both

directions (i.e., from symbolic to non-symbolic; from non-symbolic

to symbolic) could be examined. The same participants took part

in the different tests and experiments in two experimental sessions,

except for the symbolic comparison task (Experiment 2) which

included new participants, as this experiment was introduced at a

later stage in the study.

Tests on Mathematics Achievement and Spelling Abilities
Participants. The participants in the math group were 34

students (19 males, 15 females; 31 right-handed, 3 left-handed) in

the School of Mathematics at the University of Leeds, aged

between 19 and 37 years (M = 22, SD = 4). All participants were

either undergraduate students in their final year or post-graduate

students (23 undergraduates, 11 postgraduates). The control

participants were 37 students (4 males, 33 females; 32 right-

handed, 5 left-handed) in the Institute of Psychological Sciences at

the University of Leeds aged between 19 and 26 years (M = 21,

SD = 2).

All participants received an information sheet on the study and

provided written and informed consent before undertaking the

different experiments. All procedures were approved by the ethic

committee of the University of Leeds. Participants were offered

£9 per session in exchange for their time.

Tests and Procedure
Mathematics achievement was measured using the standardized

math computation subtest of the WRAT4 [70] and a non-

standardized investigator-designed calculation test, based on the

Graded Difficulty Arithmetic Test (GDA) [72]. These two types of

mathematical tests allowed us to compute a global mathematics

achievement index per participant. Participants’ spelling ability

was also assessed using the standardized spelling subtest of the

WRAT4 [70]. This task was introduced as a control task,

reflecting more general cognitive processes.

The WRAT4 math computation subtest (green form) consisted

of 40 math exercises including additions, subtractions, multiplica-

tions and divisions to be answered in written format. The problems

are easy at the beginning and then get harder. Participants have to

solve as many problems as they can in 15 minutes. The number of

exercises solved correctly is reported as raw score.

Mathematics Achievement and the Number Sense
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In the calculation test, subjects had to answer in written format

arithmetic problems presented as Arabic digits. This test presented

three sections of exercises: 1) additions; 2) subtractions; 3)

multiplications. Each section consisted of fifty questions, including

two examples, and was divided into two sub-sections. The first

sub-sections were made of simple arithmetical exercises, such as

‘‘4+6 = ’’ for the addition section, ‘‘4–3 = ’’ for the subtraction

section and ‘‘363 = ’’ for the multiplication section. The second

sub-sections presented more complicated exercises, such as

‘‘22+49 = ’’, ‘‘64–16 = ’’ and ‘‘1268 = ’’ for the addition, subtrac-

tion and multiplication sections respectively. Each sub-section had

a particular time limit (addition/subtraction sub-sections: 15 sec.

and 45 sec.; multiplication sub-sections: 20 sec. and 2 min.), under

which participants had to complete as many questions as possible.

The WRAT4 Spelling test (part two) consisted of 42 words for

the participants to spell in written format. Each word was first read

in isolation, it was then read in a sentence to illustrate its correct

use, and read again. Words could be repeated if necessary. The

raw score for spelling is the number of words spelled correctly.

Results
A mathematics achievement index was computed for each

participant by averaging scores of the WRAT4 math computation

subtest with scores of the three calculation sections (i.e. addition,

subtraction, multiplication). Independent-samples t tests indicated

that the mathematics achievement index was significantly greater

in the math group than in the control group, t(69) = 25.81,

p,.001, which was also the case for all math scores taken

independently. On the other hand, both groups of participants

presented similar scores at the WRAT4 Spelling test, U = 415.5,

z = 21.6, p..1 (see Table 1 for descriptive statistics). In the math

group, undergraduate and postgraduate students presented similar

mathematics achievement index, U = 94.5, z = 21.18, p..2, and

similar spelling scores, t(27) = 2.70, p..4. Preliminary analyses on

all the following experiments and measures taken in this study

indicated that undergraduate and postgraduate participants in the

math group systematically presented similar results.

Correlational analyses across both groups of participants

revealed significant positive correlations between the different

mathematics achievement measures (all ps,.001) and the absence

of significant correlations between the WRAT4 Spelling test and

all the different math tests (all ps..2).

These primary results are of great importance: they demonstrate

that, despite both groups of participants being well educated in

general and having had formal school education in mathematics,

they showed significantly different levels of mathematics achieve-

ment in accordance to their different levels of experience in

mathematics, while at the same time showing equal performance

on a task tapping more general cognitive abilities.

Experiment 1: Non-symbolic Comparison Task

Method
Stimuli and procedure. This experiment is a replication of

the larger-smaller behavioural task used in Piazza et al. [7], in

which participants had to judge whether target magnitudes were

smaller or larger than a reference number. As in Piazza et al. [7],

two reference numbers were used: reference number 16 and

reference number 32. On each trial a series consisting of four

different sets of dots was presented, three with the same number of

items (i.e., the reference number 16 or 32) and a fourth with a

different number of items (12, 13, 14, 15, 17, 18, 19, 20 or 24, 26,

28, 30, 34, 36, 38, 40). Participants judged whether the last set had

a larger or smaller number of items than the preceding ones. The

experiment consisted of 8 blocks of 40 trials each, in which trials

were randomly selected. There were four blocks with reference 16

and four with reference 32 randomly mixed together across

participants.

The experiment was conducted on a PC computer. Each trial

started with a fixation cross displayed for 1050 ms, each set of dots

was then presented for 150 ms. Dots were white against a black

background, followed by a fixation cross for 1050 ms before the

next set of dots appeared. Stimuli were controlled for item size,

inter-item spacing, total luminance and total occupied area as

described in Piazza et al. [7]. The experiment started with 10

practice trials, which were not included in the analyses.

Results
Following the data-trimming procedure, 2.01% of the data were

taken out of the analyses, including reaction times (RTs) smaller

than 150 ms as well as trials in which responses were outside 3

standard deviations around each participant’s average RT. The

analyses were conducted on 66 participants: thirty-three were in

the math group (1 participant missing: data not recorded) and

thirty-three in the control group (4 participants excluded: accuracy

Table 1. Descriptive statistics of tests for mathematics achievement and spelling abilities by group of participants.

Math Group Control Group Group Difference

Median (SD) Min-Max Median (SD) Min-Max

WRAT4-Spellinga 32 (3) 28–38 33 (2) 25–37 U = 415.50 p..1 z = 21.58

WRAT4-Matha 34 (3) 25–38 27 (4) 18–35 t(69) = 26.10 p,.001

Additiona 28 (5) 15–44 24 (5) 15–34 U = 334.5 p = .001 z = 23.40

Subtractiona 25 (5) 10–41 21 (5) 15–33 U = 346.00 p = .001 z = 23.26

Multiplicationa 32 (5) 25–43 23 (5) 14–35 t(69) = 26.55 p,.001

Calculationa 86 (13) 50–122 70 (13) 48–97 U = 253.50 p,.001 z = 24.31

Mathematics Achievement 30 (4) 20–40 25 (4) 17–33 t(69) = 25.81 p,.001

aRaw scores are reported here.
bCalculation corresponds to participants’ total score at the calculation test (i.e., addition, subtraction, multiplication).
cMathematics Achievement Indices were computed by averaging the participants’ results at the WRAT4-Math test, the addition, the subtraction and the multiplication
sections of the calculation test.
doi:10.1371/journal.pone.0033832.t001
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below 70%). There was no speed accuracy trade-off in both groups

of participants (ps.0.1).

First, we investigated the occurrence of a distance effect on RTs

and accuracy. Second, correlation analyses were conducted to

investigate whether participants’ level of mathematics achievement

correlated with RTs, accuracy and the distance effect. Third, ANS

acuity (w) was estimated and compared. Correlation analyses were

then carried out to examine whether mathematics achievement

correlated with ANS acuity.

The distance effect. To investigate the distance effect, two

separate ANOVAs with Reference Number (2)6Numerical

Distance (4)6Group (2) were conducted on log(RT). A

logarithmic transformation was applied to RTs in order to meet

the normality assumption in order to conduct analyses of variance.

The results showed a significant effect of group, F(1,64) = 4.65,

p,0.05, with participants in the control group presenting faster

RTs on average than participants in the math group (control

group: mean log(RT) = 2.85/RT = 725 ms; math group: mean

log(RT) = 2.89/RT = 808 ms). Numerical Distance from the

reference number also had a significant effect on log(RT),

F(3,192) = 76.50, p,0.001, with longer RTs for sets of dots that

were closer in numerosity to the reference number. Furthermore,

the interaction between Numerical Distance and Group was

significant, F(3,192) = 3.21, p,0.05 (see Figure 2). To further study

this interaction, we computed for each reference number

participants’ linear regression slope for RTs with distance as a

predictor. These regressions’ slopes (b) can be taken as an index of

the effect of distance on participants’ reaction times: the steeper

the slopes, the larger the distance effect [47]. Because the

regression slopes in the math group were not normally

distributed, the non-parametric Mann-Whitney test was used to

compare the slopes of control and math participants. The results

indicated that the distance effect was more pronounced in the

math group than in the control group for reference number 16,

U = 377.00, z = 22.15, p,.05, r = 2.26 (Mdn = 235.27 in the

math group; Mdn = 220.37 in the control group); it tended to be

more pronounced in the math group (Mdn = 217.89) than in the

control group (Mdn = 213.82) for reference number 32, but not

significantly, U = 428.00, z = 21.49, p..1, r = 2.18. The mean

regression slopes across both reference numbers were significantly

steeper in the math group (Mdn = 227.41), than in the control

group (Mdn = 216.34), U = 384.00, z = 22.06, p,.05, r = 2.25,

confirming the occurrence of a greater distance effect on RTs in

the math group compared to the control group.

Non-parametric analyses were conducted on accuracy scores, as

the assumption of normality was violated. First, we conducted

Mann-Whitney Tests for both reference numbers to study the

occurrence of a group effect. The results showed that there was no

group effect in terms of accuracy for both reference number,

U = 538.5, p..9 for reference number 16, U = 485.5, p..4 for

reference number 32. Second, the accuracy scores appeared to be

slightly better for reference number 16 than for reference number

32, as indicated by the marginally significant Wilcoxon Tests in

the math group, z = 21.33, p = .1 (Reference Number

16 Mdn = .84, SD = .05; Reference Number 32 Mdn = .83,

SD = .06), and in the control group, z = 21.76, p = .07 (Reference

Number 16 Mdn = .83, SD = .06; Reference Number

32 Mdn = .84, SD = .05). These results reflect the classic size effect:

the smaller the target magnitude, the greater the accuracy [1].

Third, Friedman’s ANOVAs for both reference numbers with

distance as test variable demonstrated a significant distance effect

on accuracy for both reference numbers in both groups: for

reference 16, x2(3) = 83.32, p,.001 in the math group,

x2(3) = 74.04, p,.001 in the control group; for reference 32,

x2(3) = 78.43, p,.001 in the math group, x2(3) = 88.13, p,.001 in

the control group.

Mathematics achievement and non-symbolic

comparison. Spearman’s correlational analyses across both

groups of participants between mathematics achievement and

the average non-symbolic comparison RTs, accuracy and distance

slopes on RT were conducted for reference number 16 and 32. No

correlation reached significance (ps..1).

ANS acuity. As a measure of the precision of the underlying

numerical representation we estimated the internal Weber fraction

(w) for each participant following the procedure described in the

Supplemental Data of Piazza et al. [7]. The median estimated

Weber fraction (w) for reference number 16 was 0.14, for reference

number 32 it was 0.15, resulting in an overall median estimate for

w of 0.14. There was no group difference on the overall median

estimate of the Weber fraction, U = 506.00, z = 2.49, p..6 (Mdn

w = .140 in the math group, Mdn w = .139 in the control group).

ANS acuity and mathematics achievement. Spearman’s

correlational analyses across both groups of participants between

the mathematics index and overall w showed that mathematics

achievement did not correlate with w, rs = 2.13, p..3.

Correlational analyses were also conducted between the different

mathematics achievement measures collected and overall w. All

the correlations were non-significant (all ps..1).

Experiment 2: Symbolic Comparison Task

In experiment 1 we tested non-symbolic quantity comparison.

In experiment 2 participants performed comparison on symbolic

material (Arabic digits).

Method
Participants. The math group in experiment 2 consisted of

34 students (23 males, 11 females; 2 left-handed) from the School

of Mathematics at the University of Leeds, aged between 20 and

24 (M = 22, SD = 2). Half of these took part in all experiments. The

control participants were 39 students (7 males, 32 females; 2 left-

handed) in the Institute of Psychological Sciences at the University

of Leeds aged between 20 and 29 (M = 22, SD = 2). Of these, 16

Figure 2. The distance effect on log(RT) by group in the non-
symbolic comparison task.
doi:10.1371/journal.pone.0033832.g002
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participated in all experiments. Participants were either

undergraduate students in their final year or post-graduate

students. New participants were tested on the WRAT4

arithmetic and spelling subtests, as well as on the calculation

test. We replicated the previous results found with these two new

groups of participants. Independent samples t tests showed that the

mathematics achievement index was significantly greater in the

math group (Math index = 29.47) than in the control group (Math

index = 24.70), t(71) = 23.88, p,.001, while the WRAT4 Spelling

scores were similar in both groups, p..3. This was also the case,

when only the new participants were included in the analyses:

Math index = 29 in the math group vs. Math index = 24.5 in the

control group, t(39) = 22.40, p,.05; WRAT4 Spelling score = 33

in both groups, p..5.

Stimuli and procedure. The symbolic comparison task was

a classic comparison task with a fixed reference number (65) [71].

In this task, all Arabic numerals from 31 to 99, except the standard

65, were presented to the participants. The 68 target numerals

were presented 6 times, giving a total of 408 target stimuli divided

into three experimental blocks. A pseudorandom list of the Arabic

numbers was created so that each target number was presented

twice in each block, and that the same number was never

presented twice in a row. The experimental blocks were preceded

by a training list of 10 numbers, which were not included in the

analyses.

The experiment was conducted on a PC computer. Each trial

started with a delay of 300 ms before the presentation of a fixation

cross (500 ms), followed by a target number presented in Courier

New 28 font for an unlimited duration. Participants had to press

the right-hand key ‘‘l’’ on the computer keyboard if the number

presented was larger than 65, and the left-hand key ‘‘a’’ if the

number presented was smaller than 65. In the instructions, the

experimenter emphasized both speed and accuracy.

Results
0.5% of the data were taken out of the analyses, following the

data-trimming procedure (i.e., a 3 standard deviation cut-off

applied for RTs). There was no significant speed accuracy trade-

off in the math group, r = .17, p.0.3. However, there was a

significant speed accuracy trade-off in the control group, r = .42,

p,.01.

The distance effect. First, the distance effect was

investigated on RTs. In order to meet the normality assumption,

a logarithmic transformation was applied to reaction times. The

target numbers were clustered into four different distance bins:

distance 1 included target numbers (61–64, 66–69) (i.e., 1 to 4

units distant from the standard 65); distance 2 included target

numbers (51–60, 70–79) (i.e., 5 to 14 units distant from 65);

distance 3 included target numbers (41–50, 80–89) (i.e., 15 to 24

units distant from 65); and distance 4 included target numbers

(31–40, 90–99) (i.e., 25 to 34 units distant from 65). An ANOVA

with Numerical Distance (4)6Group (2) was conducted on

log(RT). Results showed a significant distance effect, F(3,

213) = 388.46, p,.001, with slower reaction times the smaller

the distance between the target number and the standard 65.

There was no significant interaction and no group effect (ps..1).

Second, the distance effect was measured on accuracy.

Participants in the math group (Mdn = .96, SD = .03) presented

significantly greater accuracy compared to participants in the

control group (Mdn = .94, SD = .03), as indicated by the significant

group effect, U = 264.5, z = 24.45, p,.001. Both groups of

participants presented a significant distance effect on accuracy,

x2(3) = 75.03, p,.001 in the math group, x2(3) = 103.61, p,.001

in the control group. To further study these primary results on the

distance effect, participants’ linear regression slope for accuracy

with distance as a predictor were computed as an index of the

distance effect. Independent-samples t tests comparing the slopes

of control and math participants showed that the symbolic

distance effect was significantly more pronounced in the control

group than in the math group, t(71) = 4.81, p,.001 (b = .005,

b = .003 respectively) (see Figure 3).

Mathematics achievement and symbolic

comparison. Mathematics achievement was significantly

negatively correlated with RTs, r = 2.32, p,.005 (all

correlations were one-tailed, as positive relationship between

mathematics achievement and symbolic numerical processing was

expected [26,43,47,48,52]), as well as with the symbolic distance

slopes, r = 2.25, p,.05: the greater mathematics achievement, the

faster RTs and the smaller the distance effect on accuracy (see

Figure 4). As the number of males and females between both

groups was not equally distributed and as gender differences have

been found on intelligence [73,74], mathematical reasoning [75]

and symbolic magnitude estimation [76], we conducted

hierarchical regression analyses. With these analyses, we

investigated the extent to which participants’ mathematics

achievement explains unique variance in symbolic comparison

RTs and distance effect on accuracy, when controlling for possible

effects of gender, but also of more general cognitive abilities that

might be reflected in other cognitive skills such as spelling. We

sequentially included three steps in the following hierarchical

regression analyses: 1) gender; 2) WRAT4 Spelling score; 3)

Mathematics achievement. These correlations remained

significant for RTs, DR2 = .09, DF(1, 63) = 7.33, p,.01, and

marginally significant for the symbolic distance effect on accuracy,

DR2 = .04, DF(1, 63) = 3.22, p = .07, after controlling for gender

and spelling. Secondly, accuracy in the symbolic comparison task

correlated positively and significantly with mathematics

achievement, rs = .31, p,.005: the greater mathematics

achievement, the greater accuracy. This correlation remained

significant after controlling for gender and spelling, DR2 = .07,

DF(1, 63) = 5.83, p,.05 (see Table 2).

Figure 3. The distance effect on accuracy by group in the
symbolic comparison task.
doi:10.1371/journal.pone.0033832.g003
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Experiment 3: Numerosity Production Task

In all previous experiments the stimulus material within each

experiment was of the same type (e.g. groups of dots, Arabic

digits). In the following experiments participants had to map

between symbolic and non-symbolic number formats. Experiment

3 assessed their ability to produce non-symbolic quantities for

given Arabic digits. We refer to this experiment as the production

task from here on.

Method
Participants. Participants were the same as in Experiment 1.

Stimuli and procedure. The numerosity production task

was an estimation task involving the production of non-symbolic

quantities (i.e. sets of dots). Sixteen target numerosities were used:

21, 24, 27, 30, 33, 36, 39, 42, 49, 56, 63, 70, 77, 84, 91, 98. The

experiment was conducted on a PC computer. Each trial started

with a delay of 1000 ms before the presentation of a fixation cross

(1000 ms), followed by a target Arabic number (1000 ms),

followed by the symbol ‘‘ = ’’ (500 ms). Then a single dot

appeared on the screen for an unlimited period of time (see

Figure 5a). This single dot indicated participants to start their

numerical estimation through the production of a set of dots of a

quantity corresponding approximately to the target number

presented. The same material as in Crollen et al. [18] was used:

1) participants had to produce their responses with the use of a

potentiometer on a response box; 2) to control for low-level

perceptual variables, half of the pattern of dots produced were

initiated from an Extensive Set (i.e. luminance and total occupied

area kept constant across numerosity) (see Figure 5c) and the other

half from an Intensive Set (i.e. dots’ size and patterns’ density kept

constant across numerosity) (see Figures 5d); 3) the number of dots

that could be produced was limited to a maximum of 254 dots.

The generated dots were black on a white background. The

experiment was made of 8 blocks of 32 trials, preceded by 8

practice trials not included in the analyses. In each experimental

block, the 16 target numerosities were randomly presented twice

with production patterns initiated from both sets. The order of the

blocks was counterbalanced across participants and across groups:

half of the participants undertook block 1 to block 8, the other half

undertook block 8 to block 1.

Participants were told that they would see Arabic numbers on

the screen and that they should approximately produce their

corresponding quantity with the use of a potentiometer on a

response box. They had to report their completion by pressing a

key on the response box. The use of a counting strategy was

prevented, as dots were appearing very quickly on the screen while

the participants were turning the potentiometer (one dot/1.4u of

angular rotation). Moreover, although there was no time limitation

for the response production, participants were required to perform

the task under speed pressure and specifically instructed not to try

using a counting strategy to solve the task. The experimenter

emphasized the fact that the experiment was a numerical

estimation task and that no accurate responses were expected.

No information regarding the numerical range used was given.

Results
The analyses on this experiment were conducted on 31

participants in the math group and 31 participants in the control

group, as due to technical problems no responses were recorded

for 9 participants (3 in the math group, 6 in the control group).

Following the data-trimming procedure with a 3 standard

deviation cut-off in each cell, 0.56% of the data were removed

from the analyses. Preliminarily analyses indicated that stimuli

from the Extensive and Intensive Sets appeared to present

different levels of difficulty with greater error rates in the Intensive

Set (Mdn = .82, SD = .42) than in the Extensive Set (Mdn = .66,

SD = .40), t(61) = 26.48, p,.001. Therefore, the analyses were

conducted separately for each set of stimuli.

First, coefficients of variation were computed and regression

analyses were conducted to investigate whether participants’

mapping abilities presented the signature of Weber’s law [27].

Second, analyses of variance were carried out on the error rates to

investigate the precision of participants’ mapping abilities. Third,

the relationship between mathematics achievement and mapping

performances was investigated with the use of correlation analyses.

Mapping abilities and Weber’s law. If participants’

performance obeys Weber’s law their mean responses and their

standard variations should increased linearly and in direct

proportion with target numerosity, so that coefficients of

variation across target size (CV: ratio of the standard deviation

and the mean response) should be constant. To determine whether

participants’ patterns of performance obeyed Weber’s law, we

conducted regression analyses on log(CV)s by stimulus set and by

group. A logarithmic transformation of the CVs observed by

participant was applied to equate variability in the estimated CVs

[18,27]. In the math group, participants presented constant

log(CV)s as soon as the last target number was taken out of the

analysis in the Extensive Set, t(15) = 21.01, p..3, and as soon as

the two last target numbers were taken out of the analysis in the

Intensive Set, t(14 = 21.63, p..1. In the control group, the

log(CV)s got constant when the last target number was taken out

in the Extensive Set, t(15) = 21.99, p..05, but when the five last

target numbers were taken out in the Intensive Set, t(10) = 22.21,

p..05. The response production limitation (i.e. maximum of 254

dots on the screen) probably accounted for the fact that the largest

Figure 4. Scatterplots showing significant correlations be-
tween mathematics achievement and: (A) RTs; and (B) the
distance slope for accuracy in the symbolic comparison task.
doi:10.1371/journal.pone.0033832.g004
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target number(s) needed to be taken out of the analyses in order for

the coefficients of variation to be constant across target size.

Indeed, the response production limitation constrained

participants’ response variability for the largest target numbers.

Independent-samples tests indicated that the math group

(Mdn = 21.38, SD = .27 in the Extensive Set; Mdn = 21.37,

SD = .22 in the Intensive Set) and the control group

(Mdn = 21.45, SD = .18 in the Extensive Set; Mdn = 21.52,

SD = .20 in the Intensive Set) showed similar log(CV) in both

stimulus sets (ps..2).

Mapping precision. Friedman’s ANOVAs per stimulus set

were conducted in each group to measure the effect of target

numbers on the error rate (ER = (response – target number)/target

number). Mean error rates were computed by target number for

each participant. Target numbers were then introduced in four

target sizes: Num1 = (21, 24, 27, 30); Num2 = (33, 36, 39, 42);

Num3 = (49, 56, 63, 70); Num 4 = (77, 84, 91, 98). The results

indicated an effect of target number in both groups: in the

Extensive Set, x2(3) = 13.56, p,.005 in the math group,

x2(3) = 33.11, p,.001 in the control group; and in the Intensive

Set, x2(3) = 8.40, p,.05 in the math group, x2(3) = 7.52, p = .05 in

the control group. These effects of target number in both groups

and both sets of stimuli reflect the classic observation, according to

which the ER significantly increased with target number [18,27].

This effect indicated that the larger the target number, the more

participants over-estimated the number of dots to produce in order

to reach its corresponding magnitude. In the two sets of stimuli,

the math and the control participants presented similar ER

(ps..1): in the Extensive Set, Math Mdn = .66, SD = .38, Control

Mdn = .73, SD = .41; in the Intensive Set, Math Mdn = .76,

SD = .43, Control Mdn = .88, SD = .40.

Mapping abilities and mathematics

achievement. Correlational analyses per stimulus set across

both groups of participants between mathematics achievement

Table 2. Hierarchical regression analyses to control for gender and general cognitive abilities.

Symbolic Comparison & Math Index

RTs Accuracy

Beta RSquare
RSquare
Change Beta RSquare RSquare Change

1. Gender 2.12 .00 .00 2.25 .10 .10*

2. Spelling 2.30 .11 .11** 2.22 .14 .04

3. Mathematics achievement 2.31 .21 .09** .28 .21 .07*

Distance slope

Beta RSquare RSquare
Change

1. Gender .21 .07 .07*

2. Spelling .20 .10 .03

3. w .22 .14 .04

Numerosity Production and Math Index

Production [ER]
Extensive Set

Production [ER]
Intensive Set

Beta RSquare RSquare
Change

Beta RSquare RSquare
Change

1. Gender 2.18 .01 .01 .03 .01 .01

2. Spelling .04 .01 .00 .09 .01 .00

3. Mathematics achievement 2.22 .06 .04 2.32 .11 .10*

Numerosity Production and Perception & Math Index

Perception [ER]
Extensive Set

Perception [ER]
Intensive Set

Beta RSquare RSquare
Change

Beta RSquare RSquare
Change

1. Gender .16 .01 .01 .02 .00 .00

2. Spelling .08 .02 .01 .00 .00 .00

3. Mathematics achievement .21 .06 .04 .29 .08 .08*

*p,.05.
**p,.01.
***p,.001.
doi:10.1371/journal.pone.0033832.t002
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index and the numerosity production log(CV) and ER were

conducted. These analyses showed that log(CV) did not correlate

with mathematics achievement in both stimulus sets, ps..2. On

the other hand, the ER in the production estimation task

significantly correlated with mathematics achievement in the

Intensive Set: r = 2.32, p = .01, and marginally correlated with

mathematics achievement in the Extensive Set: r = 2.16, p = .1:

the better the level of mathematics achievement, the smaller the

ER (see Figure 6). As previously, hierarchical regression analyses

showed that mathematics achievement still accounted for a

significant amount of variance in numerosity production ER

when controlling for gender and spelling in the Intensive Set,

DR2 = .10, DF(1, 53) = 5.42, p,.05, and for marginal significant

amount of variance in the Extensive Set, DR2 = .04, DF(1,

53) = 2.38, p = .1 (see Table 2).

Experiment 4: Numerosity Perception Task

In experiment 4, participants’ mapping abilities from non-

symbolic numerosities (i.e., sets of dots) to symbolic numbers (i.e.,

Arabic digits) were assessed. We refer to this experiment as

perception task from here on.

Method
Participants. Participants were the same as in Experiments 1

and 3.

Stimuli and procedure. In the numerosity perception task

participants had to estimate non-symbolic numerosities (i.e. sets of

dots). The same sixteen numerosities as in the numerosity

production task were used to generate the target sets of dots.

The low-level continuous perceptual variables were similarly

controlled by the introduction of two different sets of stimuli:

extensive and intensive sets. A white background with black dots

was used.

The experiment was conducted on a PC computer. A single trial

started with a blank screen (1000 ms), followed by a central

fixation cross (1000 ms). The stimulus display was presented for

250 ms, followed by the sign ‘‘ = ’’ that endured until a response

was made (see Figure 4b). Participants responded by pressing the

space key and simultaneously saying aloud their response (for a

similar procedure, see [77–80] for examples). Participants were

then prompted to encode their response on the number computer

key pad. Eight practice trials were completed followed by 8 blocks

of 32 test trials (2 stimulus sets616 target numerosities). The

stimuli were randomized within blocks. After each block,

participants were given the opportunity to take a break. The

order of the blocks was counterbalanced across participants.

Results
The analyses on this experiment were conducted on 67

participants: 32 in the math group and 35 in the control group,

as 2 control participants’ and 2 math participants’ responses were

not recorded. Following the trimming procedure (i.e., a 3 standard

deviation cut-off), 1.21% of the trials were not included in the

analyses. Similar analyses as in the numerosity production task

Figure 5. The numerosity production task (A) involving participants to perform a symbolic to non-symbolic mapping; and the
numerosity perception task (B) involving participants to perform a non-symbolic to symbolic mapping. In the production task, the
presentation of a single dot following the stimulus presentation corresponds to a signal for the participant to start their response production.
Illustration of Extensive patterns of dots (C) and an Intensive pattern of dots (D) for numerosities 21 and 42.
doi:10.1371/journal.pone.0033832.g005
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were conducted. As in the production task, preliminarily analyses

indicated that stimuli from the Extensive and Intensive Sets

appeared to present different levels of difficulty with greater error

rates in the Intensive Set (Mdn = .37, SD = .16) than in the

Extensive Set (Mdn = .35, SD = .14), t(66) = 22.55, p = .01. There-

fore, the following analyses were conducted separately for each set

of stimuli.

Mapping abilities and Weber’s law. The control group

showed constant log(CV) when the last target numerosity (98) was

taken out of the analysis in the Extensive Set, t(14) = 21.57, p..1;

and when the last two target numerosities (91, 98) were taken out

of the analysis in the Intensive Set, t(13) = 21.12, p..2. The math

group showed constant log(CV) when all target numerosities were

included in the analysis in the Extensive Set, t(15) = 21.23, p..2;

and when the last target numerosity (98) was taken out of the

analysis in the Intensive Set, t(14) = 22.06, p..1. No group

difference on log(CV) was found between the math group

(Extensive Set: Mdn = 21.57, SD = .21, Intensive Set:

Mdn = 21.62, SD = .22) and the control group (Extensive Set:

Mdn = 21.64, SD = .26, Intensive Set: Mdn = 21.59, SD = .24) in

both stimulus sets (ps..5).

Mapping precision. Friedman’s ANOVAs were conducted

by stimulus set in each group to measure the effect of target

numbers on the error rate (ER = (response – target number)/target

number). As in the production task, mean ER were computed by

target number for each participant and were then clustered into

four target magnitude sizes. The results indicated an effect of

target magnitude in both stimulus sets in the math group:

x2(3) = 30.69, p,.001 in the Extensive Set, x2(3) = 53.08, p,.001

in the Intensive Set; as well as in the control group: x2(3) = 37.40,

p,.001 in the Extensive Set, x2(3) = 70.62, p,.001. These results

reflect the fact that ER significantly increased with target number

in both groups: the larger the target number, the more participants

under-estimated the number of dots presented [18,27].

Independent-samples tests indicated the control group presented

greater ER than the math group. Indeed, a significant group effect

was found in the Intensive Set, t(65) = 22.52, p,.05 (Mdn = 2.30,

SD = .16 in the math group; Mdn = 2.38, SD = .14 in the control

group); and a marginally significant group effect was found in the

Extensive Set, U = 457.50, z = 21.29, p = .1 (Mdn = 2.30, SD = .13

in the math group; Mdn = 2.40, SD = .15 in the control group).

Mapping abilities and mathematics

achievement. Correlational analyses per stimulus set across

both groups of participants between mathematics achievement

index and the numerosity production log(CV) and ER were

conducted. These analyses showed that log(CV) did not correlate

with mathematics achievement in both stimulus sets, ps..2. On

the other hand, the ER in the perception estimation task

significantly correlated with mathematics achievement in the

Intensive Set: r = .29, p,.01, and marginally correlated with

mathematics achievement in the Extensive Set: r = .18, p = .07: the

better the level of mathematics achievement, the smaller the ER

(see Figure 7). Hierarchical regression analyses showed that

mathematics achievement still accounted for a significant

amount of variance in numerosity perception ER when

controlling for gender and spelling in the Intensive Set,

DR2 = .08, DF(1, 58) = 4.96, p,.05, and for marginal significant

amount of variance in the Extensive Set, DR2 = .04, DF(1,

58) = 2.62, p = .1 (see Table 2).

Correlational Analyses
As the same groups of participants took part in the different

numerical tasks, one-tailed correlation analyses were conducted to

investigate whether participants’ performances were correlated in

the different tasks.

One-tailed correlational analyses between the numerosity

perception and production tasks indicated that participants’

performances were significantly correlated in both numerical

estimation tasks on non-symbolic material in both stimulus sets:

the greater the variability (i.e. log(CV)) in numerosity production

experiment, the greater the variability in the numerosity perception

experiment, rs = .27, p,.05 in the Extensive Set, r = .32, p,.01 in

the Intensive Set; the larger the [ER] (i.e., absolute value of ER) in

the numerosity production experiment, the larger the [ER] in the

numerosity perception experiment, rs = .30, p = .01 in the Extensive

Set, r = .30, p,.05 in the Intensive Set.

Figure 6. Scatterplot showing the correlations between mathematics achievement and ER (i.e. (response – target number)/target
number) in the numerosity production task in the Extensive and Intensive Sets.
doi:10.1371/journal.pone.0033832.g006
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Performances on symbolic and non-symbolic material were

also significantly correlated. First, performance in the symbolic

comparison task and the non-symbolic comparison task was

correlated: 1) the faster the RTs in the non-symbolic

comparison, the faster the RTs in the symbolic comparison

task, rs = .78, p,.001, and the smaller the accuracy in the

symbolic comparison, r = .33, p,.05; 2) the greater the accuracy

in the non-symbolic comparison, the faster the RTs in the

symbolic comparison, rs = 2.29, p = .05. The symbolic and non-

symbolic distance effects were correlated: the greater the

distance effect on accuracy (i.e., regression slope) in the

symbolic comparison, the smaller the distance effect on RT in

the non-symbolic comparison task, rs = .33, p,.05. This

correlation is due to the fact that, in the non-symbolic

comparison task, the non-symbolic distance effect on RTs was

more pronounced in the math group; while, in the symbolic

comparison task, the symbolic distance effect on accuracy was

more pronounced in the control group. This particular pattern

of performance is further discussed in the following section.

A set of one-tailed correlational analyses between overall w

and performances in the different numerical tasks on symbolic

and non-symbolic material showed that the smaller participants’

w: 1) the faster the RTs in the symbolic comparison task,

rs = .33, p,.05; 2) the smaller the variability (i.e., log(CV)) in the

numerosity production task (Extensive Set, rs = .30, p,.05 and

Intensive Set, rs = .30, p = .01); as well as in the perception task

(Extensive Set, rs = .41, p,.001 and Intensive Set, rs = .35,

p,.005); 3) the smaller the ER in the production task for the

Intensive Set (rs = .27, p,.05), and in the perception task

(Extensive Set, rs = .17, p = .09, and Intensive Set, rs = .18,

p = .08, marginal significance).

Discussion

Recently the relationship between basic number processing and

mathematical skill has received a lot of attention [2,26,47,48]. This

study is to our knowledge the first to investigate the effects of an

extended education in mathematics on the two core number systems,

the ANS and the ENS, in adults. Our study shows that an extended

education in mathematics appears not to be reflected in the acuity of

thenon-symbolicnumbersystem(i.e., theANS). It seems,however, to

beassociatedwithabetteranchoredsymbolicnumbersystem(i.e., the

ENS) and more precise mapping abilities between non-symbolic and

symbolic quantities. There are four main findings from the

experiments presented above. First, ANS acuity is not linked with

the level of of mathematics achievement in adults, because first the

meanANSacuitywassimilar forbothgroupsofadults (around0.15),

whether they were undergoing further math education or not, and

second ANS acuity was not significantly correlated with mathematics

achievement. Moreover, our results replicated the average w of 0.15

repeatedly found for educated numerate adults [2,6,26]. Secondly,

mathematics achievement and symbolic numerical abili-
ties were significantly correlated. Thirdly, on the link between

mathematics achievement and the distance effect, the

direction of the correlation appears to differ, whether the distance

effect is on non-symbolic or symbolic numerical material. Last,

mathematics achievement and mapping abilities are

correlated. These findings will be discussed in turn.

ANS Acuity
According to our results, individual differences in the quantity and

quality of engagement in formal mathematics might not necessarily

be associated with better ANS acuity per se, as it has been proposed

in the literature [2,8]. This important result does not simply

correspond to the acceptance of a null hypothesis. On the contrary, it

replicates and extends previous findings in developmental numerical

cognition. Indeed, as in studies by Piazza et al. [26] and Mazzocco et

al. [52] for children without mathematical learning difficulties, we

failed to find, here in adults, clear evidence of a correlation between

the ANS acuity (w in the non-symbolic comparison task; log(CV) in

the numerosity production and perception tasks) and mathematics

achievement. At this stage, it is important to emphasise that our

results are not contrary to Halberda et al.’s [8] results. Indeed,

Figure 7. Scatterplot showing the correlations between mathematics achievement and ER in the numerosity perception task in the
Extensive and Intensive Sets.
doi:10.1371/journal.pone.0033832.g007
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Halberda and colleagues essentially found a correlation between 14

year olds’ ANS acuity and their past scores in math. Likewise,

Mazzocco et al. [53] found a retrospective correlation between ANS

acuity and mathematics achievement. Therefore, our results,

together with Halberda et al.’s [8] and Mazzocco et al.’s [53]

results, suggest that at some point in development, individuals seem

to have reached their maximal ANS acuity with the ability to

discriminate between sets with a 7:8 ratio. Our results further suggest

that individuals reach this maximal ANS acuity whatever their level

of mathematics achievement.

Our results confirm the pervasiveness of an estimated w around

0.15 in adults [2,7,11,26] independent of their level of mathemat-

ics achievement. These results are important as they demonstrate

for the first time in adults, that the degree of involvement in adult

math education seems to have no impact on the non-symbolic

logarithmic core sense of approximate numerosity. As a conse-

quence, they are in agreement with the suggestion of a universal w

with a mean around 0.15 in adults [5,11,26]. However, our data

does not exclude that, at earlier stages of mathematical

development, differences in ANS acuity could be found. For

example, it is possible that adults with higher mathematics

achievement might reach their maximal ANS acuity earlier in

development or might show higher ANS acuity when they start

schooling compared to adults with lower mathematics achieve-

ment. This hypothesis appears to be highly possible, considering

Mazzocco et al.’s [53] results showing that mathematics ability for

children in primary school can be predicted by their ANS acuity at

preschool. However, despite undergoing intensive training in

mathematics and scoring significantly higher in mathematics

achievement tests, adults in the math group showed essentially the

same ANS acuity as adults in the control group, while clearly

demonstrating better performances in basic numerical skills on

symbolic numerals, as well as better mapping abilities between

symbolic numerals and their corresponding magnitudes.

Mathematics Achievement and Symbolic Number
Processing

Although there was no link between ANS acuity and

mathematics achievement, our data demonstrated clearly that an

education focused on mathematics is reflected in basic numerical

skills on symbolic material. Our findings are in line with previous

findings in children (see [43,47,48], and see [26,50,52] for studies

on learning disability). Mathematics achievement in adults was

significantly correlated with basic numerical skills on symbolic

numbers: the greater the mathematics achievement, the faster the

RTs, the greater the accuracy and the smaller the distance effect

on accuracy in the symbolic comparison task. Therefore, our

results give further support to the idea that the acquisition of the

symbolic number knowledge leads to lasting changes in numerical

processing, with the refinement of the logarithmic ANS into a

linear exact number system (ENS) [6,21–22,33,54,59]. Indeed, the

fact that participants with an education dedicated to mathematics

showed better performance on a basic symbolic comparison task

suggests that their greater experience with the symbolic number

system and arithmetic has probably given rise to a better anchored

ENS, where magnitudes can be directly accessed from symbolic

numbers.

In addition, our findings support previous observations made in

children, according to which the positive impact of greater

mathematics achievement seems not to generalize to numerical

processing on non-symbolic material [43,48,49]. Indeed, our

results showed that mathematics achievement did not correlate

with performances in the non-symbolic comparison task, except

for the distance effect.

Mathematics Achievement and the Distance Effect
Our study also showed a relationship between the distance effect

and mathematics achievement. Contrary to some previous

findings [45,47,48], our results demonstrate that the link between

the distance effect and mathematics achievement is not only found

at the early stages of formal mathematics instruction [44,47,48]

and it appears not to be limited to symbolic material [43,48].

However, the relationship between the distance effect and

mathematics achievement seems to be complex and its direction

to depend on the type of numerical material involved (symbolic vs.

non-symbolic). Indeed, on the one hand, when processing non-

symbolic numerical information, mathematics achievement was

positively correlated with the distance effect on reaction times. On

the other hand, when processing symbolic numerical information,

mathematics achievement was negatively correlated with the

distance effect on accuracy. We are now discussing these findings

in view of the recent findings in the literature, separately for the

symbolic and non-symbolic comparison tasks, in order to interpret

this particular pattern of performances.

Mathematics achievement and the symbolic distance

effect. In the symbolic comparison task, a classic distance

effect was found on RTs and on accuracy in both groups of

participants: the smaller the numerical distance between the

numbers to process, the slower and the less accurate were the

responses. The distance effect in response times did not differ

between the groups. But interestingly, the control group showed a

stronger distance effect for accuracy than the math group. The fact

that both groups of participants presented similar RTs suggests

that the difference found on the symbolic distance effect between

the two groups did not stem from the use of different response

strategies, but rather reflects differences in the underlying internal

representation used. Control participants made more mistakes in

symbolic comparison and showed a stronger distance effect for

accuracy. This suggests that participants in the math group might

have a better anchored representation for symbolic numbers

accounting for more accurate performance and might be more

able to adapt their ENS to the task at hand than participants from

the control group. This result again reinforces the idea of an ENS

that can be directly accessed from symbolic input [43,79] and

becomes better defined with increasing mathematics knowledge.

Therefore, although the linkage between the symbolic distance

effect and mathematics achievement has been reported from

childhood up into adulthood, the locus of this link might differ

with age [47,48]. In children, the association between the symbolic

distance effect and mathematics achievement is particularly

dominant in response times: better mathematics achievement in

children is associated with a greater fluency/speed in accessing

magnitude information from symbolic numerical representations.

As a consequence, it has been postulated that early formal

mathematics instruction leads to better mapping abilities between

symbolic numbers and their corresponding magnitudes [47,48]. In

adults, according to our results, the association between mathe-

matics achievement and the symbolic distance effect is noticeable

on accuracy levels, suggesting the use of a better anchored

underlying representation (i.e., the ENS). This result gives further

evidence to the developmental proposal according to which, with

age and increasing mathematics knowledge, better mapping

abilities between the symbolic and non-symbolic numerical

representations give rise to a better build-up ENS, directly

accessed from symbolic input [43,79].

Mathematics achievement and the non-symbolic distance

effect. In the non-symbolic comparison task, both groups

showed significant distance effects for response times and

accuracy levels. However, this time their distance effects for
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accuracy levels were not significantly different. But there was a

significant difference between the groups for the distance effect in

response times, with the math group presenting a stronger distance

effect on RTs. Moreover, the math group presented slower RTs

than the control group.

Overall, a possible explanation to the observed difference in

response times between both groups could be that participants

from the math group might have used a different strategy (e.g.,

introduction of a non-symbolic to symbolic transcoding stage) than

participants in the control group to solve the task, perhaps

following a greater propensity to initiate automatic transcoding

when encountering non-symbolic magnitudes. This hypothesis is

supported by Gilmore et al.’s [19] results showing that higher

achievers in mathematics showed a greater ratio effect in a non-

symbolic addition task. The ratio effect, considered as a signature

of Weber’s law, reflects the numerical distance and the size effect.

It corresponds to a decrease of accuracy as the ratio between the

quantities to compare approaches 1 [8]. For example, in Gilmore

et al. [19], children had more difficult to compare numerosities

differing by a ratio of 4:5, compared to numerosities differing by a

ratio of 4:7. Following their results, Gilmore et al. [19] predicted as

Halberda et al. [2] that children with greater mathematics

achievement would present greater ‘sensitivity’ to non-symbolic

numerical magnitudes. According to these authors, greater

‘sensitivity’ in higher achievers may involve greater motivation

to attend to symbolic numerical representations in non-symbolic

numerical tasks (i.e., transcoding activity). Therefore, in our study,

the reaction time differences between the groups observed in the

non-symbolic comparison task could be interpreted as resulting

from extra processing time for converting non-symbolic into

symbolic numerosities in the math group, which could in turn

explain the greater distance effect on RTs found in this particular

group. Indeed, the stronger distance effect on RT in the math

group could be explained by an additional processing time used to

transcode the non-symbolic numerosities into their corresponding

symbolic representations. The stronger distance effect in RT then

would be an additive effect of the distance effect for symbolic and

non-symbolic numerosities which might be due to the sequential

use of ANS and ENS. However, in view of the current literature

and our results, further research would be needed to confirm this

possible explanation.

In summary, higher mathematics achievement appears to lead

to a stronger distance effect on response times for non-symbolic

number comparison and a weaker distance effect on accuracy

levels in symbolic number comparison. At first sight these findings

seem contradictory, but they replicate behavioural results in

children on symbolic material, where mathematics achievement

negatively correlated with the symbolic distance effect [43,48] and

on non-symbolic material where mathematics achievement has

been found to positively correlated with the ratio effect [19]; and

they are in accordance with neuroimaging results, as adults present

a greater non-symbolic distance effect at a neuronal level than

children [81].

Our results strengthen the hypothesis that, in addition to

presenting a more precise ENS, individuals with greater

mathematics achievement might also possess a greater potential

to automatically activate transcoding when encountering non-

symbolic magnitudes [2,19], leading to the use of different

strategies for non-symbolic numerical processing, which might

involve a wider, possibly more automatic recruitment of the ENS

(e.g., introduction of a non-symbolic to symbolic transcoding

stage). Additional support for this hypothesis is provided by the

association found between mathematics achievement and map-

ping abilities between symbolic and non-symbolic quantities.

Mathematics Achievement and Mapping between
Symbolic and Non-symbolic Quantities

Mathematics achievement was correlated significantly with

participants’ mapping abilities from symbolic to non-symbolic

numerosities (numerosity production task) and from non-symbolic

to symbolic numerosities (numerosity perception task): the greater

the mathematics achievement, the smaller the over-estimation in

the numerosity production and the smaller the under-estimation in

the perception tasks. The ability to map between the symbolic and

non-symbolic numerical representations develops between 6 and 8

years of age and is positively related to children’s mathematics

achievement [13,24,43,47,48,52]. Recently, Mazzocco et al. [52]

further demonstrate that greater mathematics achievement in 14–

15 year-olds is associated with a higher precision in their mapping

abilities from non-symbolic to symbolic numerical presentations.

Our results extend these findings to adults: the greater the mastery

of the symbolic number system following an education dedicated

to mathematics, the better the mapping abilities between symbolic

numerical representations and their corresponding magnitudes.

However, currently the question about the direction of this

relationship and whether this relationship is causal is still open.

Indeed, none of the existing studies can answer whether better

mapping abilities are a consequence or a precursor of a more

intensive use of the symbolic number system [52]. It is possible that

stronger links between non-symbolic and symbolic number

representations lead to a better symbolic number system.

Alternatively, a well-developed symbolic number system might

lead to a stronger link between the non-symbolic and symbolic

number representations.

A modest impact of low-level continuous perceptive variables on

numerical performance has been found in the production and

perception tasks, with stimuli from the Intensive Set leading to

greater error rates than the stimuli from the Extensive Set. The

methodology of equating on half of the stimuli the extrinsic

variables but randomly varying the intrinsic variables, while doing

the reverse on the other half of the stimuli has been repeatedly

used (e.g., [3,7,21,82]), but still, as in our study, perceptual

variables can impact the numerical processing in place (e.g., [7]).

The influence of perceptual variables on non-symbolic numerical

processing is a recurrent problem in the literature on numerical

cognition (see [83]). Indeed, a facilitation effect when participants

can rely on perceptual features, such as dot size (e.g., in the

Extensive Set, dot size increases with increasing numerosity), has

already been found in the literature (e.g., [24,43]). Nevertheless,

despite this perceptual bias, the observation of the signature of

Weber’s law (i.e., constant CV) and the classic size effect (i.e.,

larger ER with larger magnitude) [18,27], added to the fact that

these results were consistent across stimulus sets and tasks, strongly

suggest that participants were actually estimating numerical

quantity rather than using perceptual variables in the production

and perception task.

The consistency of our results within the current study and

compared to other studies attests for their relevance and strength.

Indeed, we firstly replicated classical numerical effects, such as the

symbolic distance effect, as well as the non-symbolic distance and

size effects [84]; the signature of Weber’s law for numerical

processing: constant coefficient of variation across target size in the

numerosity production and perception tasks [9] and a Weber

fraction of 0.15 in the non-symbolic comparison task [2,7,11,26];

and the classical opposite pattern of performance found according

to the direction of the mapping involved in a numerical task, as

suggested by the bi-directional mapping hypothesis: over-estima-

tion when mapping from symbolic to non-symbolic vs. under-

estimation when mapping from non-symbolic to symbolic [18,27].
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Moreover, within our study, participants present consistent results

with significant correlations found between performances in the

symbolic and in the non-symbolic comparison tasks, the different

measures of ANS acuity (w in the non-symbolic comparison task

and Log(CV) in the numerosity production and perception tasks);

as well as performances in the numerosity production and

perception tasks.

In summary, our results support the idea that two numerical

systems might be at work in adults’ number processing: the ANS

and the ENS (e.g., [6]). There is no doubt that the ANS acuity

increases with age [5,26] with a likely maximum acuity reached

before or during early adulthood. Our study has shown clearly that

the ANS in adults is independent of math achievement and

experience with symbolic number representations. Our results thus

support the hypothesis that ANS development might mainly be

driven by a maturational process [5,26], whatever individuals’

culture and/or level of math education. The acquisition of the

symbolic number system and arithmetic is associated with better

mapping abilities between the symbolic numerical representations

and their corresponding magnitudes [13,24,43] and accompanied

by a refinement of the logarithmic sense of approximate

numerosity into a linear ENS, possibly located in the left IPS

[5–6,33,59]. In contrast to the ANS, the ENS is amenable to

education and cultural influences and is significantly related to

mathematics achievement: the greater mathematics achievement,

the stronger the mapping abilities and the better anchored the

ENS is. In adults, ANS and ENS are two linked but separate

systems. This does however not exclude that there might be a

period during numerical development in which the ENS is

strongly dependent on a well-developed ANS. Developmental

studies are needed to shed further light on the relationship

between ANS and the ENS, in particular focusing on the time

interval when the ENS first emerges in children.
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